MML mixture modelling of multi - state , Poisson
نویسنده
چکیده
Minimum Message Length (MML) is an invariant Bayesian point estimation technique which is also consistent and eecient. We provide a brief overview of MML inductive inference (Wallace and Boulton (1968), Wallace and Freeman (1987)), and how it has both an information-theoretic and a Bayesian interpretation. We then outline how MML is used for statistical parameter estimation, and how the MML mixture modelling program, Snob (Wallace and Boulton (1968), Wal-lace (1986), Wallace and Dowe(1994)) uses the message lengths from various parameter estimates to enable it to combine parameter estimation with selection of the number of components. The message length is (to within a constant) the logarithm of the posterior probability of the theory. So, the MML theory can also be regarded as the theory with the highest posterior probability. Snob currently assumes that variables are uncor-related, and permits multi-variate data from Gaussian, discrete multi-state, Poisson and von Mises circular distributions .
منابع مشابه
MML mixture modelling of multi - state , Poisson , von Mises circular and Gaussian distributionsChris
Minimum Message Length (MML) is an invariant Bayesian point estimation technique which is also consistent and eecient. We provide a brief overview of MML inductive inference (Wallace and Boulton (1968), Wallace and Freeman (1987)), and how it has both an information-theoretic and a Bayesian interpretation. We then outline how MML is used for statistical parameter estimation, and how the MML mix...
متن کاملMML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions
Minimum Message Length (MML) is an invariant Bayesian point estimation technique which is also statistically consistent and efficient. We provide a brief overview of MML inductive inference (Wallace C.S. and Boulton D.M. 1968. Computer Journal, 11: 185–194; Wallace C.S. and Freeman P.R. 1987. J. Royal Statistical Society (Series B), 49: 240–252; Wallace C.S. and Dowe D.L. (1999). Computer Journ...
متن کاملUnsupervised Learning of Gamma Mixture Models Using Minimum Message Length
Mixture modelling or unsupervised classification is a problem of identifying and modelling components in a body of data. Earlier work in mixture modelling using Minimum Message Length (MML) includes the multinomial and Gaussian distributions (Wallace and Boulton, 1968), the von Mises circular and Poisson distributions (Wallace and Dowe, 1994, 2000) and the distribution (Agusta and Dowe, 2002a, ...
متن کاملMML Mixture Models of Heterogeneous Poisson Processes with Uniform Outliers for Bridge Deterioration
Effectiveness of maintenance programs of existing concrete bridges is highly dependent on the accuracy of the deterioration parameters utilised in the asset management models of the bridge assets. In this paper, bridge deterioration is modelled using non-homogenous Poisson processes, since deterioration of reinforced concrete bridges involves multiple processes. Minimum Message Length (MML) is ...
متن کاملFinding Overlapping Distributions with MML
This paper considers an aspect of mixture modelling. Signiicantly overlapping distributions require more data for their parameters to be accurately estimated than well separated distributions. For example, two Gaussian distributions are considered to signiicantly overlap when their means are within three standard deviations of each other. If insuucient data is available, only a single component...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997